Podstawa programowa kształcenia ogólnego
z komentarzem

Dobra Szkoła

Szkoła podstawowa Technika
Podstawa programowa kształcenia ogólnego

z komentarzem

Szkoła podstawowa
Technika
Spis treści

Preambuła podstawy programowej kształcenia ogólnego dla szkoły podstawowej 5

Podstawa programowa przedmiotu technika .. 10

Komentarz do podstawy programowej przedmiotu technika w klasach IV–VI szkoły podstawowej – Witold Jakubek, Krzysztof Makowski ... 15
 Ogólne założenia zmian .. 15
 Porównanie poprzedniej i obecnej podstawy programowej oraz uzasadnienie zmian .. 17
 Wnioski i rekomendacje dla nauczycieli .. 28
Preambuła podstawy programowej kształcenia ogólnego dla szkoły podstawowej

Kształcenie w szkole podstawowej stanowi fundament wykształcenia. Zadaniem szkoły jest łagodne wprowadzenie dziecka w świat wiedzy, przygotowanie do wykonywania obowiązków ucznia oraz wdrażanie do samorozwoju. Szkoła zapewnia bezpieczne warunki oraz przyjazną atmosferę do nauki, uwzględniając indywidualne możliwości i potrzeby edukacyjne ucznia. Najważniejszym celem kształcenia w szkole podstawowej jest dbałość o integralny rozwój biologiczny, poznawczy, emocjonalny, społeczny i moralny ucznia.

Kształcenie w szkole podstawowej trwa osiem lat i jest podzielone na dwa etapy edukacyjne:
1) I etap edukacyjny obejmujący klasy I–III szkoły podstawowej – edukacja wczesnoszkolna;
2) II etap edukacyjny obejmujący klasy IV–VIII szkoły podstawowej.

Kształcenie ogólnie w szkole podstawowej ma na celu:
1) wprowadzanie uczniów w świat wartości, w tym ofiarności, współpracy, solidarności, altruizmu, patriotyzmu i szacunku dla tradycji, wskazywanie wzorców postępowania i budowanie relacji społecznych, sprzyjających bezpiecznemu rozwojowi ucznia (rodzina, przyjaciele);
2) wzmacnianie poczucia tożsamości indywidualnej, kulturowej, narodowej, regionalnej i etnicznej;
3) formowanie u uczniów poczucia godności własnej osoby i szacunku dla godności innych osób;
4) rozwijanie kompetencji takich jak: kreatywność, innowacyjność i przedsiębiorczość;
5) rozwijanie umiejętności krytycznego i logicznego myślenia, rozumowania, argumentowania i wnioskowania;
6) ukazywanie wartości wiedzy jako podstawy do rozwoju umiejętności;
7) rozbudzanie ciekawości poznawczej uczniów oraz motywacji do nauki;
8) wyposażenie uczniów w taki zasób wiedzy oraz kształtowanie takich umiejętności, które pozwalają w sposób bardziej dojrzały i uporządkowany zrozumieć świat;
9) wspieranie ucznia w rozpoznawaniu własnych predyspozycji i określaniu drogi dalszej edukacji;
10) wszechstronny rozwój osobowy ucznia przez pogłębianie wiedzy oraz zaspokajanie i rozbudzanie jego naturalnej ciekawości poznawczej;
11) kształtowanie postawy otwartej wobec świata i innych ludzi, aktywności w życiu społecznym oraz odpowiedzialności za zbiorowość;
12) zachęcanie do zorganizowanego i świadomego samokształcenia opartego na umiejętności przygotowania własnego warsztatu pracy;
13) ukierunkowanie ucznia ku wartościom.

Najważniejsze umiejętności rozwijane w ramach kształcenia ogólnego w szkole podstawowej to:
1) sprawne komunikowanie się w języku polskim oraz w językach obcych nowożytnych;
2) sprawne wykorzystywanie narzędzi matematyki w życiu codziennym, a także kształcenie myślenia matematycznego;
3) poszukiwanie, porządkowanie, krytyczna analiza oraz wykorzystanie informacji z różnych źródeł;
4) kreatywne rozwiązywanie problemów z różnych dziedzin ze świadomym wykorzystaniem metod i narzędzi wywodzących się z informatyki, w tym programowanie;
5) rozwiązywanie problemów, również z wykorzystaniem technik mediacyjnych;
6) praca w zespole i społeczna aktywność;
7) aktywny udział w życiu kulturalnym szkoły, środowisku lokalnego oraz kraju.

W procesie kształcenia ogólnego szkoła podstawowa na każdym przedmiocie kształtuje kompetencje językowe uczniów oraz dba o wyposażenie uczniów w wiadomości i umiejętności umożliwiające komunikowanie się w języku polskim w sposób poprawny i zrozumiały.

Waźnym zadaniem szkoły jest kształcenie w zakresie porozumiewania się w językach obcych nowożytnych. W klasach I-VI szkoły podstawowej uczniowie uczą się jednego języka obcego nowożytnego, natomiast w klasach VII i VIII – dwóch języków obcych nowożytnych. Od klasy VII uczniowie mogą także realizować nauczanie dwujęzyczne, jeżeli szkoła zorganizuje taką formę kształcenia.

Zadaniem szkoły podstawowej jest wprowadzenie uczniów w świat literatury, ugruntowanie ich zainteresowań czytelniczych oraz wyposażenie w kompetencje czytelnicze potrzebne do krytycznego odbioru utworów literackich i innych tekstów kultury. Szkoła podejmuje działania mające na celu rozbudzenie u uczniów zamiłowania do czytania oraz działania sprzyjające zwiększeniu aktywności czytelniczej uczniów, kształtuje postawę dojrzałego i odpowiedzialnego czytelnika, przygotowanego do otwartego dialogu z dziełem literackim. W procesie kształcenia i wychowania wskazuje rolę biblioteki (szkolnej, publicznej, naukowej i in.) oraz zachęca do podejmowania indywidualnych prób twórczych.

Wysokie kompetencje czytelnicze wpływają na sukces uczniów w szkole, a w późniejszym życiu pozwalają pokonywać uczniom ograniczenia i trudności związane z mniej sprzyjającym środowiskiem społecznym.

Czytanie jako umiejętność rozumienia, wykorzystywania i refleksyjnego przetwarzania tekstów, w tym tekstów kultury, to jedna z najważniejszych umiejętności zdobywanych przez ucznia w procesie kształcenia.

Dzieci, które dużo czytają, mają bogaty zasób słownictwa, z łatwością nazywają swoje uczucia i wchodzą w relacje z rówieśnikami, rzadziej sprawiają kłopoty wychowawcze, mając lepiej rozwiniętą wyobraźnię umożliwiającą obiektywne spojrzenie na zachowania własne i innych, w konsekwencji lepiej radzą sobie z obowiązkami szkolnymi, a także funkcjonowaniem w społeczności szkolnej.

Waźne jest, aby zainteresować ucznia czytaniem na poziomie szkoły podstawowej. Uczeń powinien mieć zapewniony kontakt z książką np. przez udział w zajęciach, na których czytane są na głos przez nauczycieli fragmenty lektur lub udział w zajęciach prowadzonych w bibliotece szkolnej. W ten sposób rozwijane są kompetencje czytelnicze, które ukształtują nawyk czytania książek również w dorosłym życiu.
Szkóla ma stwarzać uczniom warunki do nabywania wiedzy i umiejętności potrzebnych do rozwiązywania problemów z wykorzystaniem metod i technik wywodzących się z infor-
matyki, w tym logicznego i algorytmicznego myślenia, programowania, posługiwania się aplikacjami komputerowymi, wyszukiwania i wykorzystywania informacji z różnych źró-
deł, posługiwania się komputerem i podstawowymi urządzeniami cyfrowymi oraz stoso-
wania tych umiejętności na zajęciach z różnych przedmiotów m.in. do pracy nad tekstem, wykonywania obliczeń, przetwarzania informacji i jej prezentacji w różnych postaciach.

Szkóla ma również przygotowywać ich do dokonywania świadomych i odpowiedzialnych wyborów w trakcie korzystania z zasobów dostępnych w internecie, krytycznej analizy informacji, bezpiecznego poruszania się w przestrzeni cyfrowej, w tym nawiązywania i utrzymywania opartych na wzajemnym szacunku relacji z innymi użytkownikami sieci.

Szkóla oraz poszczególni nauczyciele podejmują działania mające na celu zindywiduali-
zowane wspomaganie rozwoju każdego ucznia, stosownie do jego potrzeb i możliwości.

Uczniom z niepełnosprawnościami, w tym uczniom z niepełnosprawnością intelektualną w stopniu lekkim, nauczanie dostosowuje się do ich możliwości psychofizycznych oraz tempa uczenia się. Wybór form indywidualizacji nauczania powinien wynikać z rozpo-
znania potencjału każdego ucznia. Jeśli nauczyciel pozwoli uczniowi na osiąganie sukcesu na miarę jego możliwości, wówczas ma on szansę na rozwój ogólny i edukacyjny. Zatem nauczyciel powinien tak dobierać zadania, aby z jednej strony nie przerastały one możliwo-
ści ucznia (uniemożliwiały osiągnięcie sukcesu), a z drugiej nie powodowały obniżenia motywacji do radzenia sobie z wyzwaniami.

Ważną rolę w kształceniu i wychowaniu uczniów w szkole podstawowej odgrywa edu-
kacja zdrowotna. Zadaniem szkoły jest kształtowanie postaw prozdrowotnych uczniów, w tym wdrożenie ich do zachowań higienicznych, bezpiecznych dla zdrowia własnego i innych osób, a ponadto ugruntowanie wiedzy z zakresu prawidłowego odżywiania się, korzyści płynących z aktywności fizycznej, a także stosowania profilaktyki.

Kształcenie i wychowanie w szkole podstawowej sprzyja rozwijaniu postaw obywatel-
skich, patriotycznych i społecznych uczniów. Zadaniem szkoły jest wzmacnianie poczucia tożsamości narodowej, przywiązania do historii i tradycji narodowych, przygotowanie i zachęcanie do podejmowania działań na rzecz środowiska szkolnego i lokalnego, w tym do angażowania się w wolontariat. Szkoła dba o wychowanie dzieci i młodzieży w duchu akceptacji i szacunku dla drugiego człowieka, kształtuje postawę szacunku dla środowis-
ska przyrodniczego, w tym upowszechnia wiedzę o zasadach zrównoważonego rozwoju, motywuje do działań na rzecz ochrony środowiska oraz rozwija zainteresowanie ekologią.

Zadaniem szkoły jest przygotowanie uczniów do wyboru kierunku kształcenia i zawodu. Szkoła prowadzi zajęcia z zakresu doradztwa zawodowego.

Duże znaczenie dla rozwoju młodego człowieka oraz jego sukcesów w dorosłym życiu ma nabywanie competencji społecznych takich jak komunikacja i współpraca w grupie,
w tym w środowiskach wirtualnych, udział w projektach zespołowych lub indywidualnych oraz organizacja i zarządzanie projektami.

Zastosowanie metody projektu, oprócz wspierania w nabywaniu wspomnianych wyżej kompetencji, pomaga również rozwijać u uczniów przedsiębiorczość i kreatywność oraz umożliwia stosowanie w procesie kształcenia innowacyjnych rozwiązań programowych, organizacyjnych lub metodycznych.

Metoda projektu zakłada znaczną samodzielność i odpowiedzialność uczestników, co stwarza uczniom warunki do indywidualnego kierowania procesem uczenia się. Wspiera integrację zespołu klasowego, w którym uczniowie, dzięki pracy w grupie, uczą się rozwiązywania problemów, aktywnego słuchania, skutecznego komunikowania się, a także wzmacniają poczucie własnej wartości. Metoda projektu wdraża uczniów do planowania oraz organizowania pracy, a także dokonywania samooceny. Projekty swoim zakresem mogą obejmować jeden lub więcej przedmiotów. Pozwalają na współdziałanie szkoły ze środowiskiem lokalnym oraz na zaangażowanie rodziców uczniów.

Wyboru treści podstawy programowej kształcenia ogólnego dla szkoły podstawowej, które będą realizowane metodą projektu, może dokonywać nauczyciel samodzielnie lub w porozumieniu z uczniami.

Projekt, w zależności od potrzeb, może być realizowany np. przez tydzień, miesiąc, semestr lub być działaniem całorocznym. W organizacji pracy szkoły można uwzględnić również takie rozwiązanie, które zakłada, że w określonym czasie w szkole nie są prowadzone zajęcia z podziałem na poszczególne lekcje, lecz są one realizowane metodą projektu.

Przy realizacji projektu wskazane jest wykorzystywanie technologii informacyjno-komunikacyjnych.

Opis wiadomości i umiejętności zdobytych przez ucznia w szkole podstawowej jest przedstawiany w języku efektów uczenia się, zgodnie z Polską Ramą Kwalifikacji.

Działalność edukacyjna szkoły określona jest przez:

1) szkolny zestaw programów nauczania;
2) program wychowawczo-profilaktyczny szkoły.

Szkolny zestaw programów nauczania oraz program wychowawczo-profilaktyczny szkoły tworzą spójną całość i muszą uwzględniać wszystkie wymagania opisane w podstawie programowej. Ich przygotowanie i realizacja są zadaniem zarówno całej szkoły, jak i każdego nauczyciela.

1 Ustawa z dnia 22 grudnia 2015 r. o Zintegrowanym Systemie Kwalifikacji (Dz.U. z 2016 r., poz. 64, z późn. zm.).
Obok zadań wychowawczych i profilaktycznych nauczyciele wykonują również działania opiekuńcze odpowiednio do istniejących potrzeb.

Działalność wychowawcza szkoły należy do podstawowych celów polityki oświatowej państwa. Wychowanie młodego pokolenia jest zadaniem rodziny i szkoły, która w swojej działalności musi uwzględniać wolę rodziców, ale także i państwa, do którego obowiązków należy stawianie właściwych warunków wychowania. Zadaniem szkoły jest ukierunkowanie procesu wychowawczego na wartości, które wyznaczają cele wychowania i kryteria jego oceny. Wychowanie ukierunkowane na wartości zakłada przede wszystkim podmiotowe traktowanie ucznia, a wartości skłaniają człowieka do podejmowania odpowiednich wyborów czy decyzji. W realizowanym procesie dydaktyczno-wychowawczym szkoła podejmuje działania związane z miejscami ważnymi dla pamięci narodowej, formami upamiętniania postaci i wydarzeń z przeszłości, najważniejszymi świętami narodowymi i symbolami państwowymi.

W szkole podstawowej na I etapie edukacyjnym, obejmującym klasy I–III – edukacja wczesnoszkolna, edukacja realizowana jest w formie kształcenia zintegrowanego. Na II etapie edukacyjnym, obejmującym klasy IV–VIII, realizowane następujące przedmioty:

1) język polski;
2) język obcy nowożytny;
3) drugi język obcy nowożytny;
4) muzyka;
5) plastyka;
6) historia;
7) wiedza o społeczeństwie;
8) przyroda;
9) geografia;
10) biologia;
11) chemia;
12) fizyka;
13) matematyka;
14) informatyka;
15) technika;
16) wychowanie fizyczne;
17) edukacja dla bezpieczeństwa;
18) wychowanie do życia w rodzinie;
19) etyka;
20) język mniejszości narodowej lub etnicznej;
21) język regionalny – język kaszubski.

2 Sposób nauczania przedmiotu wychowanie do życia w rodzinie określają przepisy wydane na podstawie art. 4 ust. 3 Ustawy z dnia 7 stycznia 1993 r. o planowaniu rodziny, ochronie plodu ludzkiego i warunkach dopuszczalności przerywania ciąży (Dz.U. z 1993 r. nr 17 poz. 78, z późn. zm.)

3 Przedmiot język mniejszości narodowej lub etnicznej oraz przedmiot język regionalny – język kaszubski jest realizowany w szkołach (oddziałach) z nauczaniem języka mniejszości narodowych lub etnicznych oraz języka regionalnego – języka kaszubskiego, zgodnie z przepisami wydanymi na podstawie art. 13 ust. 3 Ustawy z dnia 7 września 1991 r. o systemie oświaty (Dz.U. z 2016 r., poz. 1943, z późn. zm.)
Technika

Głównym celem techniki jest opanowanie przez uczniów praktycznych metod działań technicznych poprzez realizację prostych projektów opartych na przetwarzaniu różnych materiałów przy użyciu odpowiednich narzędzi i urządzeń. Podczas praktycznej działalności uczeń wyrabia prawidłowe nawyki zachowań, które są niezbędne w dorosłym życiu zawodowym. Ma możliwość działania na realnym stanowisku pracy uwzględniającym niezbędne wymagania bezpieczeństwa i higieny pracy. Wykorzystanie metody praktycznej działalności powoduje, że technika staje się przedmiotem weryfikacji i praktycznego wykorzystania wiedzy już poznanej z zakresu m. in. matematyki, biologii, informatyki oraz fizyki. Na zajęciach techniki uczeń ujawnia swoje predyspozycje, zainteresowania techniczne i zawodowe, odkrywa talenty i pasje techniczne. Przedmiot technika stanowi nieodzowny element łączący kształcenie ogólne i kształcenie zawodowe w przyszłości. To na tych zajęciach przyszli technicy i inżynierowie powinni odkrywać swoje predyspozycje.

Przedmiot technika spełnia istotną rolę wychowawczą, uczy szacunku do wytwarzanych dóbr materialnych oraz kreuje postawy świadomego użytkownika zdobyczy techniki poprzez respektowanie zasad bezpieczeństwa i higieny pracy, obowiązującego regulaminu, poszanowanie mienia oraz współpracy w grupie.

Technika przygotowuje młodego człowieka do sprawnego, odpowiedzialnego i bezpiecznego korzystania z nowoczesnych urządzeń technicznych codziennego użytku oraz do radzenia sobie z ciągle zmieniającą się rzeczywistością techniczną.

Podstawa programowa przedmiotu technika

Cele kształcenia – wymagania ogólne

I. Rozpoznawanie i opis działania elementów środowiska technicznego.
 1. Postrzeganie elementów środowiska technicznego jako dobro materialne stworzone przez człowieka.
 2. Identyfikowanie różnorodnych elementów technicznych w najbliższym otoczeniu.
 3. Klasyfikowanie elementów technicznych do określonej grupy (budowlanej, mechanicznej, elektrycznej, komunikacyjnej itp.).
 4. Rozróżnianie elementów budowy wybranych narzędzi, przyrządów i urządzeń technicznych.
 5. Wyjaśnianie działania wybranych narzędzi, przyrządów i urządzeń technicznych.
 6. Wyszukiwanie i interpretacja informacji technicznych na urządzeniach i ich opakowaniach.
 7. Określanie zalet i wad rozwiązań materiałowych i konstrukcyjnych zastosowanych do produkcji wytwórów technicznych.
 8. Wykrywanie, ocenianie i usuwanie nieprawidłowości w działaniu sprzętu technicznego.
9. Wyszukiwanie informacji na temat nowoczesnych dziedzin techniki, ciekawostek i wynalazków technicznych.
10. Projektowanie i konstruowanie modeli urządzeń technicznych z wykorzystaniem zestawów poliwalentnych.

II. Planowanie i realizacja praktycznych działań technicznych (od pomysłu do wytworu).
2. Planowanie i wykonywanie pracy o różnym stopniu trudności.
3. Posługiwanie się rysunkiem technicznym, czytanie instrukcji słownej i rysunkowej podczas planowania i wykonywania pracy wytwórczej.
4. Opracowanie planu pracy (nazwanie czynności technologicznych, uzasadnianie potrzeby zachowania odpowiedniej kolejności czynności technologicznych, szacowanie czasu potrzebnego na wykonanie poszczególnych czynności).
5. Organizowanie stanowiska pracy (dobór narzędzi, przyrządów i urządzeń do obróbki danego materiału).
6. Poszanowanie zasad i norm regulujących proces wytwarzania wytworu technicznego (regulamin pracowni, zasady BHP, współpraca w grupie, kontrakt).
8. Wyszukiwanie informacji na temat możliwości udoskonalenia działania realizowanego wytworu.
9. Przewidywanie skutków własnego działania technicznego, podejmowanie działań z namysłem i planem pracy.
10. Wartościowanie własnych możliwości w zakresie planowania, wykonywania i modernizacji tworzonych wytworów.
12. Oszczędne i racjonalne gospodarowanie materiałami, czasem i własnym potencjałem.
13. Poczucie odpowiedzialności za wyniki pracy grupowej.

III. Sprawne i bezpieczne posługiwanie się narzędziami i sprzętem technicznym.
1. Interpretacja informacji dotyczących bezpiecznej eksploatacji urządzeń technicznych i ich bezawaryjności. Analiza instrukcji obsługi.
2. Sprawne posługiwanie się podstawowymi narzędziami do obróbki ręcznej i mechanicznej, narzędziami pomiarowymi oraz urządzeniami domowymi.
3. Przewidywanie zagrożeń z niewłaściwego użytkowania sprzętu technicznego.
4. Analizowanie sytuacji zagrażających zdrowiu i życiu podczas pracy z narzędziami i urządzeniami. Procedura postępowania podczas wypadku przy pracy. Umiejętność udzielania pierwszej pomocy przedmedycznej w typowych sytuacjach zagrożenia.
5. Utrzymywanie ładu na stanowisku pracy. Przestrzeganie zasad bezpieczeństwa i higieny pracy.
6. Przyjmowanie postawy odpowiedzialności i ostrożności przy posługiwaniu się narzędziami i obsłudze urządzeń technicznych.
7. Poszanowanie narzędzi, urządzeń, sprzętu technicznego oraz własnej pracy i pracy drugiego człowieka.
IV. Dostrzeganie wartości i zagrożeń techniki w aspekcie integralnego rozwoju człowieka i poszanowania jego godności.
1. Rozpoznawanie osiągnięć technicznych, które przysłużyły się rozwojowi postępu technicznego, a tym samym człowiekowi (łżejsza praca, komfort życia).
2. Charakterystyka zagrożeń występujących we współczesnej cywilizacji spoowodowanych postępem technicznym (wojny, terroryzm, zanieczyszczenie środowiska, zagrożenie zdrowia psychicznego i somatycznego itp.).
3. Przewidywanie zagrożeń ze strony różnych wytworów techniki i urządzeń technicznych.

V. Rozwijanie kreatywności technicznej.
1. Poznawanie siebie oraz swoich predyspozycji do wykonywania zadań technicznych.
2. Rozwijanie zainteresowań technicznych.
3. Przyjmowanie postawy twórczej, racjonalizatorskiej.

VI. Przyjmowanie postawy proekologicznej.
1. Przyjmowanie postawy odpowiedzialności za współczesny i przyszły stan środowiska.
2. Kształtowanie umiejętności segregowania i wtórnego wykorzystania odpadów znajdujących się w najbliższym otoczeniu.
3. Eko-technologie pomocne w ochronie środowiska.
4. Ekologiczne postępowanie z wytworami technicznymi, szczególnie zużytnymi.

Treści nauczania – wymagania szczegółowe

I. Kultura pracy. Uczeń:
1) przestrzega regulaminu pracowni technicznej;
2) przestrzega zasad bezpieczeństwa i higieny pracy na stanowisku;
3) wyjaśnia znaczenie znaków bezpieczeństwa (piktogramów);
4) dba o powierzone narzędzia i przybory;
5) współpracuje i podejmuje różne role w pracy w zespole;
6) posługuje się nazewnictwem technicznym;
7) wykonuje prace z należytą starannością i dbałością;
8) jest świadomym i odpowiedzialnym użytkownikiem wytworów techniki;
9) śledzi postęp techniczny oraz dostrzega i poznaje zmiany zachodzące w technice wokół niego;
10) ocenia swoje predyspozycje techniczne w kontekście wyboru przyszłego kierunku kształcenia.

II. Wychowanie komunikacyjne. Uczeń:
1) bezpiecznie uczestniczy w ruchu drogowym, jako pieszy, pasażer i rowerzysta;
2) interpretuje znaki drogowe dotyczące pieszego i rowerzysty;
3) konserwuje i reguluje rower oraz przygotowuje go do jazdy z zachowaniem zasad bezpieczeństwa.
III. Inżynieria materiałowa. Uczeń:
1) rozpoznaje materiały konstrukcyjne (papier, drewno i materiały drewnopochodne, metale, tworzywa sztuczne, materiały włókiennicze, materiały kompozytowe, materiały elektrotechniczne) oraz elementy elektroniczne (rezystory, diody, tranzystory, kondensatory, cewki itp.);
2) określa właściwości materiałów konstrukcyjnych i elementów elektronicznych;
3) charakteryzuje materiały konstrukcyjne i elementy elektroniczne;
4) stosuje odpowiednie metody konserwacji materiałów konstrukcyjnych;
5) dokonuje wyboru materiału w zależności od charakteru pracy;
6) dobiera zamienники materiałowe, uwzględniając ich właściwości;
7) racjonalnie gospodaruje różnorodnymi materiałami;
8) rozróżnia i stosuje zasady segregowania i przetwarzania odpadów z różnych materiałów oraz elementów elektronicznych.

IV. Dokumentacja techniczna. Uczeń:
1) rozróżnia rysunki techniczne (maszynowe, budowlane, elektryczne, krajobrazowe);
2) wykonuje proste rysunki w postaci szkiców;
3) przygotowuje dokumentację rysunkową (stosuje rzuty prostokątne i aksonometryczne);
4) czyta rysunki wykonawcze i złożeniowe;
5) analizuje rysunki zawarte w instrukcjach obsługi i katalogach;
6) odczytuje i interpretuje informacje zamieszczone w instrukcjach obsługi urządzeń, na tabliczce znamionowej, opakowaniach żywności, metkach odzieżowych, elementach elektronicznych itp.;
7) projektuje i konstruuje modele urządzeń technicznych, w tym elektryczno-elektronicznych.

V. Mechatronika. Uczeń:
1) wyjaśnia na przykładach prostych urządzeń zasady współdziałania elementów mechanicznych, elektrycznych i elektronicznych;
2) odpowiedzialnie i bezpiecznie posługuje się sprzętem mechanicznym, elektrycznym i elektronicznym znajdującym się w domu, w tym urządzeniami oraz technologią służącą do inteligentnego zarządzania gospodarstwem domowym;
3) konstruuje, m.in. z gotowych elementów, zabawki, roboty, modele mechaniczno-elektroniczne, w tym programowalne.

VI. Technologia wytwarzania. Uczeń:
1) rozróżnia rodzaje obróbki różnych materiałów;
2) dostosowuje rodzaj obróbki do przewidzianego efektu końcowego;
3) dobiera i dostosowuje narzędzia wykorzystywane do określonej obróbki;
4) bezpiecznie posługuje się narzędziami, przyborami i urządzeniami;
5) opracowuje harmonogram działań przy różnych formach organizacyjnych pracy;
6) reguluje urządzenia techniczne;
7) dokonuje pomiarów za pomocą odpowiedniego sprzętu pomiarowego;
8) dokonuje montażu poszczególnych części w całość;
9) stosuje różne rodzaje połączeń (rozłączne i nierozłączne, pośrednie i bezpośrednie, spoczynkowe i ruchowe).

Warunki i sposób realizacji

Na zajęciach techniki uczniowie powinni nabyć umiejętności planowania i wykonywania pracy o różnym stopniu trudności, co ułatwi im kształtowanie poprawnych nawyków podczas działalności technicznej oraz umożliwi dostrzecenie różnorodnych elementów technicznych w najbliższym otoczeniu oraz zdobyte wiedzy na temat ich budowy, funkcjonowania i bezpiecznego z nich korzystania.

Nauczanie techniki powinno być oparte przede wszystkim na tworzeniu różnorodnych konstrukcji wszechobecnych w życiu codziennym i zawodowym. Przez „konstrukcje techniczne” rozumieć należy wszystkie wytwory w otaczającej rzeczywistości. Będzie to zarówno dom, samochód, komputer, robot czy most, ale również odzież, zabawka itp. Konstrukcje te powinny być filarem edukacji technicznej. Praca nad tworzeniem konstrukcji wyzwała określone zachowania i postępowanie, które odpowiednio ukierunkowane kształtują osobowość ucznia, jego zaangażowanie, kreatywność, twórcze myślenie oraz przygotowują go do życia i pracy zawodowej. Tworzenie konstrukcji uczy odpowiedzialności od początku jej tworzenia do zakończenia. Niedokładne wykonanie lub brak jakiejkolwiek części konstrukcji, niezgodność działań z procedurą, brak dyscypliny pracy – wszystko to rodzi niepowodzenie. W wykonywaniu konstrukcji wszystkie ogniwa są ważne, o czym uczeń uświadomia sobie podczas prac nad nią. Technika nauczań przez tworzenie konstrukcji technicznych kształtuje odpowiedzialnego, świadomego swych działań młodego człowieka, pozwala na rozpoznanie kompetencji technicznych charakteryzujących uczniów o wybitnych zdolnościach w tym zakresie.

 Ważne jest, aby szkoła dysponowała miejscem do wykonywania działań technicznych przez uczniów – może to być sala lekcyjna oznaczona jako „Pracownia techniczna”, stosowana do liczby uczniów i odpowiednio wyposażona do działań o charakterze twórczym.

Na zajęciach techniki uczeń powinien mieć możliwość realizacji innowacyjnych rozwiązań konstrukcyjnych lub materiałowych. Istotne jest stworzenie takiego środowiska dydaktycznego, które będzie rozbudzało myślenie twórcze uczniów. Dominującą metodą pracy na zajęciach techniki powinna być metoda projektu.

Szkolą powinna zapewnić możliwość uzyskania karty rowerowej przez ucznia, który ukończył 10 lat. Dopuszcza się organizowanie zajęć przygotowujących do uzyskania karty rowerowej nie tylko podczas przedmiotu technika, ale również podczas innych zajęć, np. godzin z wychowawcą.
Komentarz do podstawy programowej przedmiotu \textit{technika} w klasach IV–VI szkoły podstawowej

\textit{Witold Jakubek, Krzysztof Makowski}

\textbf{Ogólne założenia zmian}

„Jest tylko jeden sposób nauki – poprzez działanie” (Paulo Coelho)

Słowa Paulo Coelho – brazylijskiego pisarza i poety – stały się inspiracją do opracowania koncepcji edukacji technicznej w zreformowanej szkole podstawowej. Zakłada ona, że wiedzę teoretyczną uczeń zdobywa przede wszystkim podczas praktycznej działalności, a poszerzyć ją może na zajęciach z innych przedmiotów lub korzystając z dostępnych źródeł informacji. Jako główny cel nauczania techniki przyjęto zatem opanowanie przez uczniów praktycznych metod działań technicznych poprzez realizowanie prostych projektów opartych na przetwarzaniu różnych materiałów przy użyciu odpowiednich narzędzi i urządzeń. Realizację tego celu oparto na tworzeniu różnorodnych konstrukcji technicznych (mogą to być np.: lampa, pudelko, gra planszowa, model mechanizmu itp.)

Poniższy rysunek przedstawia strukturę kompetencji technicznych kształtowanych na zajęciach techniki podczas tworzenia konstrukcji:

\textbf{Proces tworzenia konstrukcji}

Proces tworzenia konstrukcji to odpowiednio uszeregowany zestaw działań technicznych, w trakcie których wszyscy uczniowie powinni wykształcić kompetencje ogólnotechniczne niezbędne w życiu codziennym:
1) prawidłowe wzorce zachowań, które są niezbędne w dorosłym życiu, głównie zawodowym, czyli nawyki dobrej pracy (staranność, dbałość, systematyczność, odpowiedzialność) – uczeń ma możliwość działania na realnym stanowisku pracy uwzględniającym niezbędne wymagania bezpieczeństwa i higieny pracy;
2) łączenie teorii z praktyką – wykorzystanie metody praktycznej działalności powoduje, że technika staje się przedmiotem weryfikacji i praktycznego wykorzystania wiedzy już nabytej – z zakresu m. in. matematyki, przyrody, geografii, biologii, informatyki oraz fizyki i chemii w klasach starszych;
3) prawidłowy rozwój manualny – uczeń, tworząc konstrukcję, uczestniczy w różnorodnych sytuacjach technicznych, wykonuje szereg usystematyzowanych czynności technologicznych. Każde tego typu działanie wymaga od ucznia posiadania m. in. odpowiedniej sprawności manualnej. Podstawa programowa techniki stwarza warunki do prawidłowego rozwoju manualnego.

Na lekcjach techniki uczeń ujawnia swoje predyspozycje i zainteresowania techniczne oraz zawodowe, odkrywa talenty i pasje techniczne. Uczniowie sprawni i niezależni sprzyjają rozwojowi atmosfery do generowania oryginalnych pomysłów racjonalizatorskich i rozwijania myślenia twórczego. Kreatywne lekcje techniki techniki zaspokajają potrzebę uczenia się przez działanie, łącząc pracę umysłową z ćwiczeniami manualnymi, kształcąc percepcję – czyli ucząc porządkowania pola widzenia, jak również wskazując, w jaki sposób połączyć, to co najlepsze w pierwotnej i nowej konstrukcji. Podstawa programowa zakłada, że podczas realizacji konstrukcji nastąpi rozpoznanie kompetencji technicznych charakteryzujących uczniów o wybitnych zdolnościach, którzy:
1) podejmują działania w celu zmiany konstrukcji według własnego pomysłu;
2) modyfikują proces technologiczny tworzonej konstrukcji;
3) wykorzystują konstrukcję do tworzenia własnych projektów.

Technika, jako przedmiot szkolny, stanowi nieodzowny element łączący kształcenie ogólne i kształcenie zawodowe. Na lekcjach tego przedmiotu powinni odkrywać swoje preferencje zawodowe przyszli technicy i inżynierowie. Podstawa programowa zakłada, że uczniowie na zajęciach techniki nie tylko będą nabywać wiadomości, ale również umiejętności ogólnotechnicznych, ale również takich, które pozwolą im podjąć odpowiednią decyzję dotyczącą dalszego kształcenia.

Podstawa programowa zakłada kształtowanie u uczniów postaw i nawyków, które umożliwią im zrozumienie tego, że technikę tworzą ludzie po to, aby służyła ona człowiekowi. W ten sposób przejawia się wychowawczą rolę tego przedmiotu, który wpaja szacunek do wytwarzanych dóbr materialnych oraz kreuje postawy świadomego użytkowania zbożowych technik poprzez respektowanie zasad bezpieczeństwa i higieny pracy, obowiązującego regulaminu, poszanowanie mienia oraz współpracy w grupie.

Na lekcjach techniki uczniowie powinni nabyć umiejętności planowania i wykonywania pracy o różnym stopniu trudności, co ułatwi im kształtowanie poprawnych nawyków podczas działalności technicznej. Na lekcjach techniki uczniowie powinni nabyć umiejętności planowania i wykonywania pracy o różnym stopniu trudności, co ułatwi im kształtowanie poprawnych nawyków podczas działalności technicznej. Da to również możliwość dostrzeżenia różnorodnych elementów technicznych oraz zdobycia wiedzy na temat ich budowy, funkcjonowania i bezpiecznej obsługi. Praktyczne działania techniczne uczniów wsparłe odpowiednimi
działaniami edukacyjnymi nauczyciela powinny skutkować ukształtowaniem u uczniów postaw zapewniających sprawne, odpowiedzialne i bezpieczne funkcjonowanie we współczesnym świecie technicznym z jednoczesnym przygotowaniem go do radzenia sobie z ciągle zmieniającą się rzeczywistością techniczną.

Na lekcjach techniki eksponowane są również treści związane z edukacją na rzecz bezpieczeństwa, zwłaszcza w ruchu drogowym.

Praktyczny charakter podstawy programowej odzwierciedla model nauczania techniki, który został wypracowany i sprawdzony przez wielu polskich nauczycieli. Równocześnie, zaproponowana podstawa programowa nawiązuje do założeń edukacji technicznej obowiązujących w większości krajów Europy.

Porównanie poprzedniej i obecnej podstawy programowej oraz uzasadnienie zmian

1. Porównanie celów kształcenia zajęć technicznych (w poprzedniej podstawie programowej) z celami kształcenia techniki (w podstawie programowej obowiązującej od 1 września 2017 r.) w klasach IV–VI szkoły podstawowej:

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cele kształcenia – wymagania ogólne</td>
<td></td>
</tr>
<tr>
<td>I. Rozpoznawanie i opis działania elementów środowiska technicznego.</td>
<td>1. Rozpoznawanie i opis działania elementów środowiska technicznego.</td>
</tr>
<tr>
<td>II. Planowanie i realizacja praktycznych działań technicznych (od pomysłu do wytworu).</td>
<td>2. Planowanie i realizacja praktycznych działań technicznych (od pomysłu do wytworu).</td>
</tr>
<tr>
<td>III. Sprawne i bezpieczne posługiwanie się narzędziami i sprzętem technicznym.</td>
<td>3. Sprawne i bezpieczne posługiwanie się sprzętem technicznym.</td>
</tr>
<tr>
<td>IV. Dostrzeganie wartości i zagrożeń techniki w aspekcie integralnego rozwoju człowieka i poszanowania jego godności.</td>
<td></td>
</tr>
<tr>
<td>V. Rozwijanie kreatywności technicznej.</td>
<td></td>
</tr>
<tr>
<td>VI. Przyjmowanie postawy proekologicznej.</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: wytłuszczono wymagania ogólne dodane w nowej podstawie programowej.

W obecnej podstawie programowej cele kształcenia techniki zapisano w języku wymagań ogólnych. Nowa podstawa została rozpisana w sześciu obszarach, natomiast poprzednia – w trzech. Struktura celów kształcenia nowej podstawy techniki wpisuje się częściowo w konstrukcję celów kształcenia zajęć technicznych, którą zaproponowali autorzy poprzedniej podstawy. Zobowiązywała ona nauczycieli do prowadzenia zajęć technicznych opartych na fazowej działalności technicznej. Praktyczny charakter nowej podstawy
również obliguje do korzystania z funkcjonującego modelu działalności technicznej. Dlatego też w nowej podstawie programowej pozostawiono trzy pierwsze wymagania. Fazy modelu działalności technicznej składają się na pełny cykl wykonania konstrukcji, którego realizację nowa podstawa traktuje jako filar edukacji technicznej.

W stosunku do poprzedniej podstawy programowej cele kształcenia uzupełniono dodatkowo trzema wymaganiami ogólnymi:

- **dostrzeganie wartości i zagrożeń techniki w aspekcie integralnego rozwoju człowieka i poszanowania jego godności** – technika jest przedmiotem, który stwarza idealne możliwości do realizacji założeń edukacji dla zrównoważonego rozwoju, szczególnie w zakresie wpływu postępu technicznego na rozwój i życie człowieka zarówno jako szansa jak i zagrożenie;

- **przyjmowanie postawy odpowiedzialności za współczesny i przyszły stan środowiska** – cel ten został wyeksponowany, aby podkreślić, jak wielkie znaczenie w codziennym życiu ma właściwy stosunek człowieka do przyrody – przejawiający się w poszanowaniu jej praw. Świadomość, że sama technika nie wystarcza, by powstrzymać zagrożenia związane z degradacją przyrody, powinna kształtować nawyki postępowania zmierzające do minimalizacji wpływu technologii na środowisko przyrodnicze.

Oba powyższe wymagania wpisują się w cele oświatowe polskiej szkoły, która: „... dba o wychowanie dzieci i młodzieży w duchu tolerancji i szacunku dla drugiego człowieka, kształtuje postawę szacunku dla środowiska przyrodniczego, w tym upowszechnia...”
wiedzę o zasadach zrównoważonego rozwoju, motywuje do działań na rzecz ochrony środowiska oraz rozwija zainteresowanie ekologią\(^4\).

- **rozwijanie kreatywności technicznej** – lekcje techniki pozwalają na stworzenie interesującego i motywującego środowiska dydaktycznego, które sprzyja rozwijaniu aktywnego zaangażowania uczniów poprzez wykorzystanie ich naturalnej chęci do poznania, zrozumienia, opanowania nowej wiedzy i umiejętności oraz zastosowania zdobytych kompetencji w praktyce. W wyniku tych działań uczniowie przekonują się, że warto robić użytek z własnej wyobraźni technicznej, a dzięki temu będą gotowi do pracy w zawodach, które jeszcze nie istnieją i korzystać z technologii, które dopiero zostaną wynalezione\(^5\).

Cel ten wpisuje się w strategię polityki oświatowej państwa, która postuluje m. in.: „kształtowanie u uczniów postaw przedsiębiorczości i kreatywności sprzyjających aktywnemu uczestnictwu w życiu gospodarczym, w tym poprzez stosowanie w procesie kształcenia innowacyjnych rozwiązań programowych, organizacyjnych lub metodycznych\(^6\).

Nowa podstawa w zasadniczy sposób zmienia schemat myślenia o technice, traktując ją jako ważny przedmiot w szkolnej edukacji. Przede wszystkim eksponuje założenia dotyczące praktycznego charakteru przedmiotu oraz jego roli w rozpoznawaniu predyspozycji technicznych uczniów, ułatwiających wybór odpowiedniej drogi dalszego kształcenia. Cele kształcenia zostały tak opracowane, że mogą stanowić układ odniesienia porządkujący rozumienie istoty przedmiotu. Sposób ukierunkowania nauczycieli – poprzez uszczegółowienie wymagań ogólnych – nie pozostawia wątpliwości, co do ich interpretacji. Ogólne zapisy celów kształcenia bez uszczegółowienia, które obecne były w poprzedniej podstawie, często prowadziły do nadinterpretacji. Powodowało to sytuację, w której realizacja zajęć pozostawała niekiedy w sprzeczności z założeniem praktycznego charakteru tego przedmiotu. Jasno sprecyzowane wymagania ogólne są gwarantem przejrzystości podstawy programowej oraz przywrócenia prestiżu nauczania praktycznego w polskich szkołach.

I. **Rozpoznawanie i opis działania elementów środowiska technicznego.**

1. Postrzeganie elementów środowiska technicznego jako dobra materialnego stworzonego przez człowieka.
2. Identyfikowanie różnorodnych elementów technicznych w najbliższym otoczeniu.
3. Klasyfikowanie elementów technicznych do określonej grupy (budowlanej, mechanicznej, elektrycznej, komunikacyjnej itp.)
4. Rozróżnianie elementów budowy wybranych narzędzi, przyrządów i urządzeń technicznych.
5. Wyjaśnianie działania wybranych narzędzi, przyrządów i urządzeń technicznych.
6. Wyszukiwanie i interpretacja informacji technicznych na urządzeniach i ich opakowaniach.
7. Określanie zalet i wad rozwiązań materiałowych i konstrukcyjnych zastosowanych do produkcji wytworów technicznych.

\(^4\) Załącznik nr 2 do Rozporządzenia Ministra Edukacji Narodowej z dnia 14 lutego 2017 r. (Dz.U. z 2017 r., poz. 356) – Podstawa programowa kształcenia ogólnego dla szkoły podstawowej.

\(^6\) Art. 1. Ustawy z dnia 14 grudnia 2016 r. Prawo oświatowe (Dz.U. z 2017 r., poz. 59).
8. Wykrywanie, ocenianie i usuwanie nieprawidłowości w działaniu sprzętu technicznego.
9. Wyszukiwanie informacji na temat nowoczesnych dziedzin techniki, ciekawostek i wynalazków technicznych.
10. Projektowanie i konstruowanie modeli urządzeń technicznych z wykorzystaniem zestawów poliwalentnych.

II. Planowanie i realizacja praktycznych działań technicznych (od pomysłu do wytworu).
1. Rozpoznawanie potrzeby wykonania wytworu technicznego; motywacja do działania; analiza możliwości wykorzystania wykonanego wytworu.
2. Planowanie i wykonywanie pracy o różnym stopniu trudności.
3. Posługiwanie się rysunkiem technicznym, czytanie instrukcji słownej i rysunkowej podczas planowania i wykonywania pracy wytwórczej.
4. Opracowywanie planu pracy (nazywanie czynności technologicznych, uzasadnianie potrzeby zachowania odpowiedniej kolejności czynności technologicznych, szacowanie czasu potrzebnego na wykonanie poszczególnych czynności).
5. Organizowanie stanowiska pracy (dokładność, czasem i osobistym potencjałem).
6. Poszukiwanie i sprawdzenie narzędzi, przyrządów i urządzeń do obróbki danego materiału.
8. Wyszukiwanie informacji na temat możliwości usprawdzenia działania realizowanego wytworu.
9. Przewidywanie skutków własnego działania technicznego, podejmowanie działań z namysłem i planem pracy.
10. Wartościowanie własnych możliwości w zakresie planowania, wykonywania i modernizacji tworzonych wytworów.
12. Oszczędne i racjonalne gospodarowanie materiałami, czasem i własnym potencjałem.
13. Poczucie odpowiedzialności za wyniki pracy grupowej.

III. Sprawne i bezpieczne posługiwanie się narzędziami i sprzętem technicznym.
1. Interpretacja informacji dotyczących bezpiecznej eksploatacji urządzeń technicznych i ich bezawaryjności. Analiza instrukcji obsługi.
2. Sprawne posługiwanie się podstawowymi narzędziami do obróbki ręcznej i mechanicznej, narzędziami pomiarowymi oraz urządzeniami domowymi.
3. Przewidywanie zagrożeń z niewłaściwego użytkowania sprzętu technicznego, w tym także roweru.
4. Analizowanie sytuacji zagrożających zdrowiu i życiu podczas pracy z narzędziami i urządzeniami. Procedura postępowania podczas wypadku przy pracy. Umejętność udzielenia pierwszej pomocy przedmedycznej w typowych sytuacjach zagrożenia.
5. Utrzymywanie ładu na stanowisku pracy. Przestrzeganie zasad bezpieczeństwa i higieny pracy.
6. Przyjmowanie postawy odpowiedzialności i ostrożności przy posługiwaniu się narzędziami i obsłudze urządzeń technicznych.
7. Poszanowanie narzędzi, urządzeń, sprzętu technicznego oraz własnej pracy i pracy drugiego człowieka.

IV. Dostrzeganie wartości i zagrożeń techniki w aspekcie integralnego rozwoju człowieka i poszanowania jego godności.
1. Rozpoznanie osiągnięć technicznych, które przysłużyły się rozwojowi postępu technicznego, a tym samym człowiekowi (lżejsza praca, komfort życia).
2. Charakterystyka zagrożeń występujących we współczesnej cywilizacji spowodowanych postępem technicznym (wojny, terroryzm, zanieczyszczenie środowiska, zagrożenie zdrowia psychicznego i somatycznego itp.)
3. Przewidywanie zagrożeń ze strony różnych wytworów techniki i urządzeń technicznych.

V. Rozwijanie kreatywności technicznej.
1. Poznawanie siebie oraz swoich predyspozycji do wykonywania zadań technicznych.
2. Rozwijanie zainteresowań technicznych.
3. Przyjmowanie postawy twórczej, racjonalizatorskiej.

VI. Przyjmowanie postawy proekologicznej.
1. Przyjmowanie postawy odpowiedzialności za współczesny i przyszły stan środowiska.
2. Kształtowanie umiejętności segregowania i wtórnego wykorzystania odpadów znajdujących się w najbliższym otoczeniu.
3. Ekotechnologie pomocne w ochronie środowiska.
4. Ekologiczne postępowanie z wytworami technicznymi, szczególnie zużytnymi.

2. Porównanie treści nauczania zajęć technicznych (w poprzedniej podstawie programowej) z treścią nauczania techniki (w nowej podstawie obowiązującej od 1 września 2017 r.) w klasach IV–VI szkoły podstawowej.

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kultura pracy</td>
<td>1. Opisywanie techniki w bliższym i dalszym otoczeniu</td>
</tr>
<tr>
<td>2. Wychowanie komunikacyjne</td>
<td>2. Opracowywanie koncepcji rozwiązań problemów technicznych</td>
</tr>
<tr>
<td>3. Inżynieria materiałowa</td>
<td>3. Planowanie i realizacja praktycznych działań technicznych</td>
</tr>
<tr>
<td>4. Dokumentacja techniczna</td>
<td>4. Sprawne i bezpieczne posługiwanie się sprzętem technicznym</td>
</tr>
<tr>
<td>5. Mechatronika</td>
<td>5. Wskazywanie rozwiązań problemów rozwoju środowiska technicznego</td>
</tr>
<tr>
<td>6. Technologia wytwarzania</td>
<td></td>
</tr>
</tbody>
</table>
Treści nauczania oraz oczekiwane umiejętności uczniów zapisano jako wymagania szczegółowe. W obecnej podstawie techniki zostały one pogrupowane w sześciu blokach tematycznych, natomiast w poprzedniej podstawie zajęć technicznych – w pięciu. Nazwy bloków w nowej podstawie są inne niż w poprzedniej. Niemniej jednak wymagania szczegółowe w dużym stopniu są tożsame w obu podstawach.

Treści nauczania w nowej podstawie przedstawiono według działów programowych, a nie w kolejności ich realizacji na lekcjach. Podczas prac nad konstrukcją powinny być wykorzystywane treści z bloków tematycznych: kultura pracy, dokumentacja techniczna, inżynieria materiałowa, technologia wytwarzania oraz ewentuallynie z mechatroniki, jeżeli będzie wskazywał na to charakter konstrukcji. Wymagania szczegółowe usystematyzowano i uszczegółowiono w taki sposób, aby nauczyciel podczas wykonywania z uczniami konkretniej konstrukcji z łatwością wybrał do realizacji te treści, które są niezbędne do osiągnięcia wytworu końcowego.

Treści z bloku „Wychowanie komunikacyjne” stanowią oddzielny obszar tematyczny i nie wiążą się z procesem tworzenia konstrukcji.

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treści nauczania – wymagania szczegółowe</td>
<td>Brak zapisów</td>
</tr>
<tr>
<td>I. Kultura pracy. Uczeń:</td>
<td></td>
</tr>
<tr>
<td>1) przestrzega regulaminu pracowni technicznej;</td>
<td></td>
</tr>
<tr>
<td>2) przestrzega zasad bezpieczeństwa i higieny pracy na stanowisku;</td>
<td></td>
</tr>
<tr>
<td>3) wyjaśnia znaczenie znaków bezpieczeństwa (piktogramów);</td>
<td></td>
</tr>
<tr>
<td>4) dba o powierzone narzędzia i przybory;</td>
<td></td>
</tr>
<tr>
<td>5) współpracuje i podejmuje różne role w pracy w zespole;</td>
<td></td>
</tr>
<tr>
<td>6) posługuje się nazewnictwem technicznym;</td>
<td></td>
</tr>
<tr>
<td>7) wykonuje prace z należytą starannością i dbałością;</td>
<td></td>
</tr>
<tr>
<td>8) jest świadomym i odpowiedzialnym użytkownikiem wytworów techniki;</td>
<td></td>
</tr>
<tr>
<td>9) śledzi postęp techniczny oraz dostrzega i poznaje zmiany zachodzące w technice wokół niego;</td>
<td></td>
</tr>
<tr>
<td>10) ocenia swoje predyspozycje techniczne w kontekście wyboru przyszłego kierunku kształcenia.</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: wytluszczone treści, które dodano w nowej podstawie programowej.
Nowością w stosunku do poprzedniej podstawy programowej jest blok „Kultura pracy”, który zawiera przede wszystkim treści dotyczące bezpieczeństwa uczniów podczas wykonywania działań technicznych oraz poszanowania pracy i wytworów techniki. W poprzedniej podstawie nie uwzględniono podobnych zapisów. Nowa podstawa zakłada, że odpowiednie zachowanie się w ramach działalności technicznej ma istotny wpływ na atmosferę pracy i jej efekty. Treści z tego bloku powinny być realizowane równolegle ze wszystkimi pozostałymi treściami zawartymi w podstawie programowej techniki. Systematyczność w realizowaniu treści związanych z kulturą pracy zaowocuje odpowiednim sposobem odnoszenia się uczniów do siebie, racjonalną postawą wobec zagrożeń występujących podczas pracy i umiejętnością ich likwidowania lub zapobiegania im.

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Wychowanie komunikacyjne. Uczeń:</td>
<td>4. Sprawne i bezpieczne posługiwanie się sprzętem technicznym. Uczeń:</td>
</tr>
<tr>
<td>1) bezpiecznie uczestniczy w ruchu drogowym, jako pieszy, pasażer i rowerzysta;</td>
<td>2) bezpiecznie uczestniczy w ruchu drogowym jako pieszy, pasażer i rowerzysta.</td>
</tr>
<tr>
<td>2) interpretuje znaki drogowe dotyczące pieszego i rowerzysty;</td>
<td></td>
</tr>
<tr>
<td>3) konserwuje i reguluje rower oraz przygotowuje go do jazdy z zachowaniem zasad bezpieczeństwa.</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: wytłuszczone treści, które dodano w nowej podstawie programowej, natomiast podkreślono treści zapisane w obu podstawach.

W nowej podstawie programowej wyszczególniono zakres treści związanych z bezpieczeństwem ruchu drogowego jako oddzielną blok tematyczny składający się z trzech punktów. Natomiast w poprzedniej podstawie programowej zagadnienia te ujęto w jednym sformułowaniu: „beziecznie uczestniczy w ruchu drogowym jako pieszy, pasażer i rowerzysta”, co mogło sugerować bardzo szeroki zakres realizacji tych treści. Nowa podstawa programowa sugeruje wymagania szczegółowe, które są niezbędne do uzyskania przez ucznia karty rowerowej. Treści z tego zakresu należałoby uszczegółować dodatkowymi informacjami:

1) **beziecznie uczestniczy w ruchu drogowym, jako pieszy, pasażer i rowerzysta:** interpretuje warunki dopuszczenia rowerzysty do uczestnictwa w ruchu drogowym; posiada prawidłowe nawyki jazdy rowerem; korzysta w sposób świadomy z elementów podnoszących bezpieczeństwo w ruchu drogowym; respektuje nałazy i zakazy obowiązujące rowerzystę w ruchu drogowym; przyjmuje postawę szacunku wobec innych uczestników ruchu drogowego; stosuje zasadę szczególnej ostróżności oraz ograniczonego zaufania; formułuje wyczerpującą informację o wypadku;

2) **interpretuje sygnały i znaki drogowe dotyczące pieszego i rowerzysty:** definiuje najważniejsze pojęcia (m.in. takie jak: droga, jej elementy i rodzaje, pojazd i jego rodzaje); charakteryzuje podstawowe manewry w ruchu drogowym; omawia
zasady ruchu drogowego obowiązujące na skrzyżowaniach oraz przejazdach kolejowych;
3) konserwuje i reguluje rower oraz przygotowuje go do jazdy z zachowaniem zasad bezpieczeństwa: rozpoznaje i klasyfikuje zespoły, części i niezbędne wyposażenie roweru, kontroluje elementy roweru wpływające na bezpieczeństwo jazdy.

Podstawa programowa zakłada, że treści z zakresu wychowania komunikacyjnego będą realizowane niezależnie od wykonywanych działań technicznych. Więcej informacji na ten temat znajduje się w rozdziale „Wnioski i rekomendacje dla nauczycieli”

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treści nauczania – wymagania szczegółowe</td>
<td></td>
</tr>
<tr>
<td>III. Inżynieria materiałowa. Uczeń:</td>
<td>1. Opisywanie techniki w bliszszym i dalszym otoczeniu. Uczeń:</td>
</tr>
<tr>
<td>1) rozpoznaje materiały konstrukcyjne (papier, drewno i materiały drewno-nopolodne, metale, tworzywa sztuczne, materiały włókiennicze, materiały kompozytowe, materiały elektrotechniczne) oraz elementy elektroniczne (m.in. rezistory, diody, tranzistory, kondensatory, cewki itp.);</td>
<td>2) podaje zalety i wady stosowanych rozwiązań materiałowych i konstrukcyjnych;</td>
</tr>
<tr>
<td>2) określa właściwości materiałów konstrukcyjnych i elementów elektronicznych;</td>
<td>2. Opracowywanie koncepcji rozwiązań problemów technicznych. Uczeń:</td>
</tr>
<tr>
<td>3) charakteryzuje materiały konstrukcyjne i elementy elektroniczne;</td>
<td>1) rozpoznaje materiały konstrukcyjne: papier, materiały drzewne, metale, tworzywa sztuczne; bada i porównuje podstawowe ich właściwości: twardość i wytrzymałość; określa możliwości wykorzystania różnych materiałów w technice w zależności od właściwości;</td>
</tr>
<tr>
<td>4) stosuje odpowiednie metody konserwacji materiałów konstrukcyjnych;</td>
<td>2) racjonalnie gospodaruje różnorodnymi materiałami,</td>
</tr>
<tr>
<td>5) dokonuje wyboru materiału w zależności od charakteru pracy;</td>
<td>3) rozróżnia i stosuje zasady segregowania i przetwarzania odpadów z różnych materiałów oraz elementów elektronicznych.</td>
</tr>
<tr>
<td>6) dobiera zamienniki materiałowe, uwzględniając ich właściwości;</td>
<td>5. Wskazywanie rozwiązań problemów rozwoju środowiska technicznego. Uczeń:</td>
</tr>
<tr>
<td>2) racjonalnie gospodaruje różnorodnymi materiałami,</td>
<td>1) opisuje zasady segregowania i możliwości przetwarzania odpadów z różnych materiałów: papieru, drewna, tworzyw sztucznych, metali i szkła;</td>
</tr>
<tr>
<td>3) rozróżnia i stosuje zasady segregowania i przetwarzania odpadów z różnych materiałów oraz elementów elektronicznych.</td>
<td>2) opracowuje projekty racjonalnego gospodarowania surowcami wtórnymi w najbliższym środowisku: w domu, na osiedlu, w miejscowości.</td>
</tr>
</tbody>
</table>

Uwaga: wytłuszczono treści, które dodano w nowej podstawie programowej.
Treści związane z materiałami stosowanymi w procesie tworzenia konstrukcji nowa podstawa programowa przedstawia w bloku „Inżynieria materiałowa”, który wskazuje umiejętnośki niezbędne do dokonywania właściwego wyboru materiału konstrukcyjnego oraz jego eksploatacji. Dzięki znajomości rodzajów materiałów i ich właściwości uczeń prawidłowo doberie materiał do charakteru wykonywanego przedmiotu i użyje właściwych narzędzi do jego obróbki. Przygotowanie ucznia w tym zakresie wymaga od nauczyciela zastosowania metod nauczania, które wzbudzą zainteresowanie tą dziedziną techniki oraz uznysłowią jej ważność dla rozwoju cywilizacji (nazwy okresów w dziejach ludzkości mają związek z rodzajami materiałów decydujących wówczas o warunkach życia, np. epoki: kamienia, brązu, żelaza), a przede wszystkim ukażą jej wpływ na postęp w każdej dziedzinie życia. Warto też zwrócić uwagę na rozwój nowoczesnych materiałów konstrukcyjnych (materiały kompozytowe, nanomateriały, biomateriały itp.) wpływających na cechy użytkowe wszystkich przedmiotów i urządzeń, którymi się posługujemy na co dzień.

Poprzednia podstawa ujmuje te treści w trzech obszarach: opisywanie techniki w bliższym i dalszym otoczeniu, opracowywanie koncepcji rozwiązań problemów technicznych, wskazywanie rozwiązań problemów rozwoju środowiska technicznego. Umiejętności w nich wskazane w większości pokrywają się z tymi, które wskazuje nowa podstawa.

Istotna różnica dotyczy treści związanych z działaniami proekologicznymi (punkty 7. i 8. nowej podstawy oraz punkty 5.1. i 5.2. poprzedniej podstawy). W nowej podstawie użyto sformułowień zakładających umiejętności („racjonalnie gospodaruje”, „rozróżnia i stosuje”), które uczeń stosuje w życiu codziennym. Natomiast w poprzedniej podstawie przedstawiono umiejętności („opisuje”, „opracowuje”), które uczeń posiada, ale nie koniecznie wykorzystuje je w praktyce.

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treści nauczania – wymagania szczegółowe</td>
<td></td>
</tr>
<tr>
<td>IV. Dokumentacja techniczna. Uczeń:</td>
<td>2. Opracowywanie koncepcji rozwiązań problemów technicznych. Uczeń:</td>
</tr>
<tr>
<td>1) różnica rysunki techniczne (maszynowe, budowlane, elektryczne, krawieckie);</td>
<td>1) zapisuje rozwiązania techniczne w formie graficznej, wykonuje odręczne szkice techniczne i proste rysunki rzutowe (prostokątne i aksonometryczne), analizuje rysunki techniczne stosowane w katalogach i instrukcjach obsługi;</td>
</tr>
<tr>
<td>2) wykonuje proste rysunki w postaci szkiców;</td>
<td>2) konstruuje modele urządzeń technicznych, posługując się gotowymi zestawami do montażu elektronicznego i mechanicznego.</td>
</tr>
<tr>
<td>3) przygotowuje dokumentację rysunkową (stosuje rzuty prostokątne i aksonometryczne);</td>
<td>4. Sprawne i bezpieczne posługiwanie się sprzętem technicznym. Uczeń:</td>
</tr>
<tr>
<td>4) czyta rysunki wykonawcze i złożeniowe;</td>
<td>1) (...) czyta ze zrozumieniem instrukcje obsługi urządzeń</td>
</tr>
<tr>
<td>5) analizuje rysunki zawarte w instrukcjach obsługi i katalogach;</td>
<td>2) konstruuje modele urządzeń technicznych, posługując się gotowymi zestawami do montażu elektronicznego i mechanicznego.</td>
</tr>
<tr>
<td>6) odczytuje i interpretuje informacje zamieszczone w instrukcjach obsługi urządzeń, na tabliczce znamionowej, opakowaniach żywności, metkach odzieżowych, elementach elektronicznych itp.;</td>
<td>4. Sprawne i bezpieczne posługiwanie się sprzętem technicznym. Uczeń:</td>
</tr>
<tr>
<td>7) projektuje i konstruuje modele urządzeń technicznych, w tym elektryczno-elektronicznych.</td>
<td>1) (…) czyta ze zrozumieniem instrukcje obsługi urządzeń</td>
</tr>
</tbody>
</table>

Uwaga: wytluszczone treści, które dodano w nowej podstawie programowej.
Stałąm elementem lekcji techniki powinno być korzystanie z informacji technicznej, a w szczególności czytanie dokumentacji technicznej dotyczącej wykonywanej konstrukcji. Treści z tym związane zostały zawarte w bloku „Dokumentacja techniczna”. Aby uczeń mógł prawidłowo wykonać te czynności, powinien znać zasady tworzenia rysunków technicznych i posiąść umiejętność ich czytania. Nauczyciel, zatem musi przygotować uczniów do korzystania głównie z dokumentacji rysunkowej. Istnieją wiele form i metod nauczania informacji technicznej, w której rysunek techniczny – wykonany zgodnie z obowiązującymi zasadami – stał się językiem inżynierów i techników.

Umiejętności uczniów w tym zakresie wskazane w nowej podstawie są w większości takie same jak w poprzedniej podstawie. Nowa podstawa dodatkowo wskazuje, aby uczeń rozróżniał rysunki techniczne (maszynowe, budowlane, elektryczne, krawieckie) oraz odczytywał i interpretował informacje nie tylko zawarte w instrukcjach obsługi, ale również na wytworach, z którymi spotyka się na co dzień, np. na tabliczce znamionowej dowolnego urządzenia domowego, opakowaniach żywności, metkach odzieżowych, elementach elektronicznych itp.

<table>
<thead>
<tr>
<th>Technika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treści nauczania – wymagania szczegółowe</td>
<td>2. Opracowywanie koncepcji rozwiązań problemów technicznych. Uczeń:</td>
</tr>
<tr>
<td>V. Mechatronika. Uczeń:</td>
<td>3) konstruuje modele urządzeń technicznych, posługując się gotowymi zestawami do montażu elektronicznego i mechanicznego.</td>
</tr>
<tr>
<td>1) wyjaśnia na przykładach prostych urządzeń zasady współdziałania elementów mechanicznych, elektrycznych i elektronicznych;</td>
<td>4. Sprawne i bezpiecznie posługiwanie się sprzętem technicznym. Uczeń:</td>
</tr>
<tr>
<td>2) odpowiedzialnie i bezpiecznie posługuje się sprzętem mechanicznym, elektrycznym i elektronicznym znajdującym się w domu, w tym urządzeniami oraz technologią służącą do inteligentnego zarządzania gospodarstwem domowym;</td>
<td>1) potrafi obsługiwać i regulować urządzenia techniczne znajdujące się w domu, szkole i przestrzeni publicznej z zachowaniem zasad bezpieczeństwa (…)</td>
</tr>
<tr>
<td>3) konstruuje, m.in. z gotowych elementów, zabawki, roboty, modele mechaniczno-elektroniczne, w tym programowalne.</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: wytłuszczono treści, które dodano w nowej podstawie programowej.

Mechatronika to blok, który został wprowadzony ze względu na potrzebę przybliżenia uczniom nowoczesnych technologii. W poprzedniej podstawie programowej znajdowały się niektóre z tych zagadnień dotyczące konstruowania modeli urządzeń technicznych z wykorzystaniem gotowych zestawów do montażu elektronicznego i mechanicznego, a także związane z obsługą i regulacją urządzeń technicznych znajdujących się w domu, szkole i przestrzeni publicznej – w kontekście zachowania zasad bezpieczeństwa. Jednak nie obejmowały one treści stanowiących istotę mechatroniki, czyli integrowania urządzeń mechanicznych ze sterowaniem komputerowym.
W nowej podstawie uzupełniono te treści poprzez dodanie umiejętności wyjaśniania współdziałania elementów mechanicznych, elektrycznych i elektronicznych oraz odpowiedzialnego i bezpiecznego posługiwania się urządzeniami oraz technologią służącą do inteligentnego zarządzania gospodarstwem domowym – czyli automatycznym systemem sterowania urządzeniami domowymi w celu zapewnienia bezpieczeństwa, oszczędności energii i wygody domowników. Dodane treści powinny być realizowane w zakresie podstawowym w klasach IV–VI, natomiast rozszerzenie tych treści może nastąpić w klasach starszych podczas zajęć informatyki lub na zajęciach pozalekcyjnych.

<table>
<thead>
<tr>
<th>Teknika – obecna podstawa programowa</th>
<th>Zajęcia techniczne – poprzednia podstawa programowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treści nauczania – wymagania szczegółowe</td>
<td>1. Opisywanie techniki w bliższym i dalszym otoczeniu. Uczeń:</td>
</tr>
<tr>
<td>VI. Technologia wytwarzania. Uczeń:</td>
<td>1) opisuje urządzenia techniczne ze swojego otoczenia, wyróżnia ich funkcje;</td>
</tr>
<tr>
<td>1) rozróżnia rodzaje obróbki różnych materiałów;</td>
<td>3. Planowanie i realizacja działań praktycznych. Uczeń:</td>
</tr>
<tr>
<td>2) dostosowuje rodzaj obróbki do przewidzianego efektu końcowego;</td>
<td>1) wypisuje kolejność działań (operacji technologicznych); szacuje czas ich trwania; organizuje miejsce pracy;</td>
</tr>
<tr>
<td>3) dobiera i dostosowuje narzędzia wykorzystywane do określonej obróbki;</td>
<td>2) posługuje się podstawowymi narzędziami stosowanymi do obróbki ręcznej (piłowania, cięcia, szlifowania, wiercenia) różnych materiałów i montażu.</td>
</tr>
<tr>
<td>4) bezpiecznie posługuje się narzędziami, przyborami i urządzeniami;</td>
<td>4. Sprawne i bezpiecznie posługiwanie się sprzętem technicznym. Uczeń:</td>
</tr>
<tr>
<td>5) opracowuje harmonogram działań przy różnych formach organizacyjnych pracy;</td>
<td>1) potrafi obsługiwać i regulować urządzenia techniczne znajdujące się w domu, szkole i przestrzeni publicznej z zachowaniem zasad bezpieczeństwa (...)</td>
</tr>
<tr>
<td>6) reguluje urządzenia techniczne;</td>
<td></td>
</tr>
<tr>
<td>7) dokonuje pomiarów za pomocą odpowiedniego sprzętu pomiarowego;</td>
<td></td>
</tr>
<tr>
<td>8) dokonuje montażu poszczególnych części w całości;</td>
<td></td>
</tr>
<tr>
<td>9) stosuje różne rodzaje połączeń (rozłączone i nierozłączone, pośrednie i bezpośrednie, spoczynkowe i ruchowe).</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: wytłuszczono treści, które dodano w nowej podstawie programowej.

Blok tematyczny „Technologia wytwarzania” obejmuje treści związane z procesami wytwarzania lub przetwarzania surowców, półwyrobów i wyrobów. W zależności od rodzaju otrzymywanych produktów rozróżnia się m.in. technologię: metali, drewna, tworzyw sztucznych, budowy maszyn. W szkole podstawowej znajduje zastosowanie przede wszystkim technologia mechaniczna, która obejmuje metody kształtowania różnorodnych materiałów. Nauczyciel ma za zadanie zaopatrzenie uczniów w wiedzę dotyczącą rodzajów obróbek, narzędzi i urządzeń stosowanych do kształtowania określonego materiału. Uczniowie powinni również nabyć nawyk planowania pracy oraz bezpiecznej obsługi narzędzi, przyborów i urządzeń.
Większość treści jest spójna w obu podstawach. Jednakże w nowej podstawie zostały one uszczegółowione, poprzez dodanie zagadnień dotyczących rozpoznawania różnych rodzajów obróbki i dostosowania ich do efektu końcowego, wykonywania różnorodnych pomiarów, oraz stosowania odpowiednich połączeń montażowych. Więcej informacji na temat realizacji treści z tego bloku znajduje się w rozdziale „Wnioski i rekomendacje dla nauczycieli”.

Wnioski i rekomendacje dla nauczycieli

Wymienione warunki prowadzenia zajęć techniki mają odzwierciedlenie w Ustawie Prawo Oświatowe, która wyraźnie wskazuje, że:

„Art. 1. System oświaty zapewnia w szczególności:
(...) 14) utrzymywanie bezpiecznych i higienicznych warunków nauki, wychowania i opieki w szkołach i placówkach;

Art. 10. 1. Organ prowadzący szkołę lub placówkę odpowiada za jej działalność. Do zadań organu prowadzącego szkołę lub placówkę należy w szczególności:
1) zapewnienie warunków działania szkoły lub placówki, w tym bezpiecznych i higienicznych warunków nauki, wychowania i opieki (...);
5) wyposażenie szkoły lub placówki w pomoce dydaktyczne i sprzęt niezbędny do pełnej realizacji programów nauczania, programów wychowawczo-profilaktycznych, przeprowadzania egzaminów oraz wykonywania innych zadań statutowych”;

pozwolić uczniom na artykułowanie własnych potrzeb i zainteresowań technicznych. Nauczyciel powinien wspierać te zainteresowania np. poprzez wprowadzanie dodatkowych technicznych zadań problemowych oraz stworzenie takiego środowiska w pracowni technicznej, które pozwoli uczniom doświadczać rzeczywistości i odkrywać własne predyspozycje techniczne i w rezultacie dokonywać prawidłowych wyborów co do dalszego kształcenia.

Do takich działań zobowiązują każdego nauczyciela dokumenty prawne:

„Art. 1. System oświaty zapewnia w szczególności:

(…)

19) przygotowywanie uczniów do wyboru zawodu i kierunku kształcenia”⁸;

Kształcenie ogólne w szkole podstawowej ma na celu:

9) wspinanie ucznia w rozpoznawaniu własnych predyspozycji i określaniu drogi dalszej edukacji oraz rozumieniu, innych i miejsca człowieka w świecie;

12) zachęcanie do zorganizowanego i świadomego samokształcenia opartego na umiejętności przygotowania własnego warsztatu pracy”⁹.

Przepisy prawne wyraźnie wskazują, na kim spoczywa odpowiedzialność za bezpieczeństwo uczniów podczas praktycznych działań w szkole.

„Art. 1. System oświaty zapewnia w szczególności:

(…)

21) upowszechnianie wśród dzieci i młodzieży wiedzy o bezpieczeństwie oraz kształtownie prawa i obowiązki, w tym związanych z korzystaniem z technologii informacyjno-komunikacyjnych, i sytuacji nadzwyczajnych”¹⁰;

¹⁰ Ustawa z dnia 14 grudnia 2016 r. Prawo oświatowe (Dz.U. z 2017 r., poz. 59).
(...) Szkoła zapewnia bezpieczne warunki oraz przyjazną atmosferę do nauki, uwzględniając indywidualne możliwości i potrzeby edukacyjne ucznia"11. „Art. 6. Nauczyciel obowiązany jest m.in.:
1. rzetelnie realizować zadania związane z powierzonym mu stanowiskiem oraz podstawowymi funkcjami szkoły: dydaktyczną, wychowawczą i opiekuńczą, w tym zadania związane z zapewnieniem bezpieczeństwa uczniom w czasie zajęć organizowanych przez szkołę”12.

4. Wiodącą metodą pracy na technice powinna być metoda projektów, której istotą polega na tym, że uczniowie realizują określone zadanie techniczne w oparciu o przyjęte wcześniej założenia. Cechą charakterystyczną tej metody jest wzięcie działalności praktycznej z wysiłkiem umysłowym. Jest to uczenie się poprzez czynne działanie i badanie, jakiego wymaga proces tworzenia konstrukcji technicznej. Na technice powinny być realizowane przede wszystkim projekty techniczne – zorientowane na działalność praktyczną, pozwalające uczniowi przyswoić wiedzę techniczną oraz kształcić jego umiejętności specjalistyczne. Proponuje się wykorzystanie projektów technicznych o charakterze:
• koncepcyjnym i badawczym – uczniowie zbierają i systematyzują informacje na temat rozwiązań technicznych, budowy i zasady działania urządzeń, opracowują koncepcje nowych rozwiązań technicznych, opracowują rozwiązania szczegółowe dotyczące doboru materiału, wielkości i kształtu poszczególnych elementów składowych i całych urządzeń, opracowują dokumentację techniczną zawierającą rysunki wykonawcze, złożeniowe;
• wytwórczym – uczniowie planują pracę zgodnie z procesem technologicznym realizowanego przedsięwzięcia, dobierają narzędzia, przewidują czas realizacji poszczególnych operacji technologicznych, wykonują modele urządzeń technicznych;
• eksploatacyjnym – uczniowie opracowują zasady obsługi regulacji i konserwacji konkretnych urządzeń, opracowują metody zrównoważonego rozwoju techniki, czyli opracowują metody likwidacji ujemnych skutków działań technicznych.

Zrozumienie znaczenia metody projektów znajduje odbicie w głównych założeniach podstawy programowej dla szkoły podstawowej, w której podkreślono, iż: „Duże znaczenie dla rozwoju młodego człowieka oraz jego sukcesów w dorosłym życiu ma nabywanie kompetencji społecznych, takich jak: komunikacja i współpraca w grupie, w tym w środowiskach wirtualnych, udział w projektach zespołowych lub indywidualnych oraz organizacja i zarządzanie projektami”13.

5. Podstawa programowa techniki wskazuje na potrzebę rozwijania kreatywności technicznej uczniów. Będzie to możliwe dzięki stworzeniu przez nauczyciela takiego środowiska dydaktycznego, które pobudzi uczniów do poznawania, zrozumienia, opowiadania nowej wiedzy i jej zastosowania w praktyce. Nauczyciel w trakcie realizacji

11 Załącznik nr 2 do Rozporządzenia Ministra Edukacji Narodowej z dnia 14 lutego 2017 r. (Dz.U. z 2017 r., poz. 356).
12 Ustawa z dnia 26 stycznia 1982 r. Karta Nauczyciela (Dz.U. z 2016 r., poz. 1379 oraz z 2017 r., poz. 60).
każdego projektu technicznego ma możliwość wykorzystania różnorodnych technik rozwijających kreatywność. Należy przy tym zaznaczyć, że nie będą to lekcje poświęcone strikte treningowi kreatywnego myślenia. Zadaniem nauczyciela powinno być jedynie zmotywowanie swoich uczniów do poszukiwania innych, być może lepszych, rozwiązań konstrukcyjnych lub materiałowych, które pozwolą na szersze wykorzystanie wyrobu wykonanego w ramach realizowanego projektu technicznego. Powinna temu przyświecać myśl Paulo Coelho: „Wszystko, czego się dotąd nauczyłeś, zatraci sens, jeśli nie potrafisz znaleźć zastosowania dla tej wiedzy”.

Motywacją do takiego działania może być stworzenie przez nauczyciela sytuacji problemowej, np. poprzez:

- zadanie intrugującego pytania typu: „Jak zapobieć…” (np. Jak zamocujesz w imdle obrabiany materiał, żeby nie drgał podczas przecinania?);
- zaproponowanie ćwiczenia dedukcyjnego: „Co by było, gdyby…” (np. A co by było, gdyby zniknęły wszystkie tworzywa sztuczne? A co by było, gdyby narzędzia zaczęły mówić?)
- wykorzystanie pytań (w formie czasowników modyfikujących) z listy kontrolnej Alexa Osborna.

W literaturze poświęconej technikom twórczego myślenia można znaleźć wiele propozycji ćwiczeń, które doskonale nadają się do wywołania wśród uczniów chęci ulepszania, naprawiania czy modernizowania wykonanego wytworu. Oprócz już wymienionych godne polecenia techniki:

1) „Kruszenie” – odwrotność burzy mózgów – polega na wskazaniu dużej liczby wad analizowanego wytworu, co powinno wzbudzić u uczniów potrzebę usunięcia tych usterek;
2) „Inwentarz potrzeb” – polega na wyróżnieniu pożądanych cech wytworu przyszłego bądź doskonalszego niż istniejący, co pokazuje uczniom, że warto podjąć aktywność twórczą, ponieważ dany wytwór nie spełnia całkowicie naszych potrzeb, więc trzeba go naprawić;
3) „Maszyna bez wad” – polega na zaprojektowaniu idealnego wytworu poprzez wyróżnienie jego wad, a następnie ulepszenie go, pozbawiając wszelkich wad (ideal);
4) „Ulepszenie produktu” – polega na symbolicznym rozłożeniu na części pierwszego całego wytworu, a następnie podaniu ich zmianie (np. parametry fizyczne, funkcje, wzajemny układ elementów itp.).

Potrzeba kształtowania kreatywności na lekcjach techniki wynika nie tylko z potrzeby współczesnego świata techniki, ale również z zapisów prawnych:

- „Kształcenie ogólne w szkole podstawowej ma na celu:"
- rozwijanie kompetencji takich jak kreatywność, innowacyjność i przedsiębiorczość;
- rozbudzanie ciekawości poznawczej uczniów oraz motywacji do nauki;

10)wszechstronny rozwój osobowy ucznia poprzez pogłębianie wiedzy oraz zaspokajanie i rozbudzanie jego naturalnej ciekawości poznawczej16;
Działania nauczycieli mające dążyć do wspomagania wszechstronnego rozwoju wychowanków postuluje Karta Nauczyciela:
„Art. 6. Nauczyciel obowiązany jest m.in.:
1) wspierać każdego ucznia w jego rozwoju17;

Rozwijanie zainteresowań i uzdolnień technicznych zapewnia prawo oświatowe.
„Art. 1. System oświaty zapewnia w szczególności:
20) warunki do rozwoju zainteresowań i uzdolnień uczniów przez organizowanie zajęć pozalekcyjnych i poszkolnych oraz kształtowanie aktywności społecznej i umiejętności spędzania czasu wolnego18;

Wskazane jest, aby przygotowanie do uzyskania karty rowerowej odbywało się w ramach specjalnego kursu organizowanego w ramach realizacji godzin do dyspozycji dyrektora szkoły. Będzie to bardzo ważny element edukacyjny, ponieważ uczeń po raz pierwszy weźmie udział w szkoleniu (pozalekcyjnym), które pomoże mu w zdobyciu pierwszego uprawnienia w zakresie ruchu drogowego. Uczestniczenie w takim kursie nie tylko przygotowuje ucznia do uczestniczenia w ruchu drogowym, ale także uczy odpowiedniego podejścia do procesu zdobywania wiedzy i umiejętności. Będzie to procentowo w dalszej jego edukacji. Warunkiem prawidłowej organizacji szkolnych kursów przygotowujących do uzyskania karty rowerowej jest opracowanie regulaminu, który powinien określać m.in. warunki dotyczące uczestnictwa w kursie, jego zaliczenia, czasu trwania kursu itp.

Szkoła może również nawiązać współpracę z Wojewódzkim Ośrodkiem Ruchu Drogowego, jeżeli taki funkcjonuje w najbliższej okolicy. Instytucja ta może zorganizować szkolenie przygotowujące uczniów do uzyskania karty rowerowej – zgodnie

16 \textit{Ustawa z dnia 14 grudnia 2016 r. Prawo oświatowe} (Dz.U. z 2017 r., poz. 59).
17 \textit{Ustawa z dnia 26 stycznia 1982 r. Karta Nauczyciela} (Dz.U. z 2016 r., poz. 1379 oraz z 2017 r., poz. 60).
18 \textit{Załącznik nr 2 do Rozporządzenia Ministra Edukacji Narodowej z dnia 14 lutego 2017 r.} (Dz.U. z 2017 r, poz. 356) – \textit{Podstawa programowa kształcenia ogólnego dla szkoły podstawowej}.
z zapisami znowelizowanego Prawa o Ruchu Drogowym: „Do zadań ośrodka należy: (...)organizowanie zajęć dla uczniów ubiegających się o kartę rowerową”¹⁹.

Natomiast Ministerstwo Transportu, Budownictwa i Gospodarki Morskiej wskazuje dyrektora szkoły, jako osobę odpowiedzialną za organizację egzaminu na kartę rowerową: „§ 21. 1. Egzamin dla uczniów szkoły podstawowej składa się z części:
1) teoretycznej – uwzględniającej treści, o których mowa w art. 41 ust. 1 ustawy;
2) praktycznej – przeprowadzonej w miejscu wyznaczonym przez dyrektora szkoły podstawowej, umożliwiającym sprawdzenie niezbędnych umiejętności praktycznych.

2. Egzamin dla uczniów szkoły podstawowej przeprowadza się w terminie wyznaczonym przez dyrektora szkoły podstawowej, który określa formę części teoretycznej oraz czas trwania części teoretycznej i części praktycznej egzaminu”²⁰.

8. Warunkiem poprawnej realizacji założeń podstawy programowej techniki skupionej na praktycznej działalności uczniów jest spełnienie poniższych założeń:
- Zajęcia techniki powinny być realizowane w blokach dwugodzinnych – pozwoli to na sprawną organizację procesu lekcyjnego oraz możliwość wykonania przez uczniów wszystkich czynności składających się na pełny cykl działalności technicznej.
- Na lekcjach techniki należy zminimalizować wykorzystanie podręczników – zgodnie z założeniami podstawy programowej wiedzę teoretyczną uczeń powinien zdobywać przede wszystkim podczas praktycznej działalności, a wiedzę na określony temat może pogłębić, korzystając z różnorodnych źródeł informacji (takich jak: Internet, czasopisma techniczne, literatura techniczna, podręczniki), w tym również z zasobów biblioteki szkolnej oraz uczestnicząc w wycieczkach do zakładów pracy lub regionalnych ośrodków nauki i techniki.
- Wykorzystanie na technice zestawów poliwarentnych, zwłaszcza dotyczących robotyki, należy ograniczyć do niezbędnego minimum – nie mogą one domniemować zajęć z tego przedmiotu. Powinny uzupełniać proces zdobywania wiedzy na określony temat, wyjaśniając pewne zagadnienia techniczne, które wykorzystane zostaną następnie przy wykonywaniu konstrukcji. Szerzesze zastosowanie zestawów poliwarentnych zaleca się na zajęciach pozalekcyjnych.
- Prace wytwórcze wykonywane przez uczniów powinny być konstrukcjami wielomateriałowymi, czyli wytwarzanymi z kilku materiałów konstrukcyjnych (np. drewno, tworzywo sztuczne i metal) oraz zawierającymi gotowe układy (np. mechaniczne, elektryczne i elektroniczne) – zadaniem techniki jest pokazanie możliwości obróbki i łączenia różnorodnych materiałów, w związku z tym wyklucza się stosowanie w całym cyklu nauczania techniki wyłącznie materiałów jednorodnych, np. tylko papieru.
- Istotnym założeniem podstawy programowej jest wykształcenie u uczniów trwających umiejętności, przyzwyczajenie i nawyków działalności technicznej. Dlatego też nauczyciel powinien tak organizować zajęcia lekcyjne, aby pożądane czynności

¹⁹ Art. 117. pkt 7. Obwieszczenia Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 14 grudnia 2016 r. w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo o ruchu drogowym (Dz.U. z 2017 r., poz. 128).
²⁰ Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 12 kwietnia 2013 r. w sprawie uzyskiwania karty rowerowej (Dz.U. z 2013 r., poz. 512).
były wielokrotnie powtarzane. Doprowadzi to zarówno do pojawienia się zachowań automatycznych, odruchowych, jak i do świadomego podejmowania decyzji oraz właściwych wyborów. Przyczyni się również do swobodnego, sprawnego stosowania zdobytej wiedzy w praktyce. Ważne jest więc, aby nauczyciel dobrał takie metody nauczania, które wspomogą go w realizacji tych działań.

9. Większość lekcji techniki powinna być związana z „Technologią wytwarzania”. Aby spełnić założone cele w obrębie tego bloku, proponuje się zastosowanie metod praktycznych, które ułatwiają uczniowi bezpośrednie poznawanie rzeczywistości. Do tej grupy zalicza się między innymi:

1) problemowa metoda laboratoryjna – polega na wdrażaniu uczniów do dostrzegania, formułowania i rozwiązywania problemów teoretycznych i praktycznych w trakcie zajęć lekcyjnych. Istotą tej metody jest to, że uczniowie, wykorzystując wiedzę zdobytą wcześniej, przyswajają nowe wiadomości i umiejętności dzięki samodzielnej aktywności podczas wykonywania prac technicznych;

2) metoda zajęć praktycznych – polega na zastosowaniu wiedzy w rozwiązywaniu zadań praktycznych i ma na celu rozwijanie umiejętności stosowania teorii w praktyce, co prowadzi do zdobywania i pogłębiania wiedzy. Aby kształtowanie tych umiejętności przebiegało sprawnie, nauczyciel powinien uwzględnić w procesie dydaktycznym poniższe ogniwa:
 a) uświadomienie uczniom nazwy i znaczenia danej umiejętności (np. przenoszenie wymiarów na materiał – trasowanie);
 b) sformułowanie na podstawie wcześniej zdobytych wiadomości reguł dotyczących danej umiejętności (np. czytanie wymiarów na rzutach prostokątnych, przeliczanie skali rysunkowej, zastosowanie odpowiednich przyborów itp.);
 c) prawidłowe wykonanie danych czynności (trasowania) przez nauczyciela (może tu zastosować bezpośredni pokaz z objaśnieniem) – ważne jest, aby nauczyciel wykonał daną czynność beztłumnie i zgodnie z zasadami bhp;
 d) wykonywanie przez ucznia czynności pod okiem nauczyciela, który zwraca uwagę na wszystkie aspekty dotyczące tej czynności (np. przy trasowaniu pilnuje, aby była zachowana prawidłowa kolejność działań i odpowiedni wybór przyborów, sprawdza poprawność trzymania przyborów i postawę przy wykonywaniu tej czynności, kontroluje zgodność wymiarów na materiale z rysunkiem technicznym);
 e) systematyczne, samodzielne i świadome wykonywanie przez uczniów czynności, prowadzące do utrwalenia danej umiejętności.

Metoda zajęć praktycznych wiąże się ścisłe z przestrzeganiem zasad dotyczących dobrej pracy. Nauczyciel powinien wdrożyć swoich uczniów do stosowania zasady gospodarności (celowości, oszczędności i wydajności pracy) oraz racjonalnego planowania i realizacji podjętych działań.

10. Zgodnie z ramowym planem nauczania na realizację techniki przeznaczono po 1 godzinie w klasach: IV, V i VI, czyli 3 godziny w pięcioletnim okresie nauczania. Podstawa programowa została przygotowana dla II etapu edukacji. Jednak, mimo usilnych starań autorów podstawy, pominięto technikę w klasie VII i VIII. W podstawie
programowej techniki znalazły się treści z zakresu elektroniki i mechatroniki, których realizacja wymaga korelacji z fizyką i chemią. Dlatego też nie jest możliwa realizacja wszystkich zagadnień z zakresu tych dziedzin w klasach IV–VI. Wskazane jest, aby te treści zrealizować za pomocą projektów technicznych na zajęciach kółek zainteresowań w klasach VII–VIII z wykorzystaniem zasobów narzędziowych i materiałowych pracowni technicznej.

11. Uczniowie, którzy w klasach IV–VI wykazali się ponadprzeciętnymi zdolnościami technicznymi, powinni mieć możliwość dalszego doskonalenia swoich umiejętności w klasie VII i VIII w ramach kółek technicznych czy modelarskich organizowanych w ramach puli godzin do dyspozycji dyrektora szkoły. Praktycznie dopiero w dwóch ostatnich klasach szkoły podstawowej będą oni mogli w pełni wykorzystać wiedzę i umiejętności z zakresu przedmiotów ścisłych – takich jak: matematyka (a szczególnie geometria), fizyka, chemia, biologia czy informatyka – do realizacji projektów technicznych zgodnych z ich zainteresowaniami. Takie działania szkoły niewątpliwie wspierają uczniów we właściwych wyborach dalszego kształcenia po szkole podstawowej. Warunki organizacji dodatkowych zajęć, m. in. dla uczniów uzdolnionych technicznie, określa Prawo oświatowe. W art. 109 tejże ustawy czytamy, że poza obowiązkowymi zajęciami edukacyjnymi szkoła może organizować:

„(...)
2) dodatkowe zajęcia edukacyjne, do których zalicza się:
 a) (...)
 b) zajęcia, dla których nie została ustalona podstawa programowa, lecz program nauczania tych zajęć został włączony do szkolnego zestawu programów nauczania;
 (...)
6) zajęcia rozwijające zainteresowania i uzdolnienia uczniów, w szczególności w celu kształtowania ich aktywności i kreatywności”

„(...)
3. Zajęcia edukacyjne, o których mowa w ust. 1 pkt 2, organizuje dyrektor szkoły, za zgodą organu prowadzącego szkołę i po zasięgnięciu opinii rady pedagogicznej i rady rodziców.
4. Szkoła może prowadzić również inne niż wymienione w ust. 1 i 2 zajęcia edukacyjne.
5. (...)
6. Zajęcia, o których mowa w ust. 1 pkt 7, są organizowane dla uczniów klasy VII i VIII szkoły podstawowej (...)
7. Zajęcia, o których mowa w ust. 1 pkt 7, są realizowane niezależnie od pomocy w wyborze kierunku kształcenia i zawodu udzielanej uczniom w ramach zajęć, o których mowa w ust. 1 pkt 5”

21 Ustawa z dnia 14 grudnia 2016 r. Prawo oświatowe (Dz.U. z 2017 r., poz. 59).
22 Ibidem.